Mapping the Structure of Transition to Adulthood in China during the Economic Reform

Felicia Feng Tian

Department of Sociology

Duke University

Abstract:

China has experienced massive economic restructuring and rapid economic growth in the past three decades. The institutional changes have profoundly affected the life experience of young people living in China. The current analysis uses census data to map the structure of the transition to adulthood in China between 1982 and 2005. Specifically, the current analysis attempts to answer three questions: (1) has transition to adulthood in China more differentiated in the past three decades? (2) which demographic groups experienced the greatest changes? and (3) which life domains (family, education or work) contribute most to these changes? The current analysis also contributes to our knowledge about transition to adulthood during economic globalization.
Mapping the structure of transition to adulthood in China during the economic reform

Felicia Feng Tian, Department of Sociology, Duke University

Introduction

A growing body of literature in the United States and Europe suggests that the transition to adulthood is increasingly differentiated during the economic globalization. The age-graded pathway to adulthood of education-work-marriage-childbearing, which was gradually institutionalized since the beginning of the twentieth century (Fussell and Furstenberg 2005; Kohli 1986; Modell, Furstenberg, and Hershberg 1976), have lost its dominance and different pathways have started to emerge (Mortimer 2003; Mouw 2005; Shanahan 2000). The most evident changes have occurred in the family arena. Young people have postponed marriage and childbearing are postponed, and are more likely to have births out of wedlock (Bruckner and Mayer 2005; Cherlin 2004; Pagnini and Rindfuss 1993). Moreover, these changes are concentrated among lower-income young people, who have become less likely than their wealthier to follow a predictable sequence of education, full-time employment, marriage and parenthood counterparts (McLanahan 2004; Settersten and Bay 2010).

However, we know relatively less about the structure of transition to adulthood in the developing world. As 86 percent of world’s young people live in the developing world (Lloyd 2005), understanding their life experience significantly contributes to our knowledge of the impact of economic globalization on youth. There is substantial literature describing the changes of marriage and fertility behavior by improvement of educational attainment (i.e. Mensch 2005), but only a few studies seeking to map the structure of transition to adulthood in developing countries (Fussell 2005; Grant and Furstenberg 2007). Understanding the transition to adulthood in a structure view that looks at simultaneously multiple life domains is important, as life course theory suggest that life domains are interdependent and people may engage in multiple domains at the same time (Elder, Johnson, and Crosnoe 2003; Macmillan 2005).

The current analysis uses censuses to map the structure of the transition to adulthood in China from 1982 to 2005. China has experienced the massive economic restructuring and the rapid economic growth in the past three decades. Young people in China today have more opportunities and also face more challenges compared to their parents or grandparents (Hannum and Liu 2005). Specifically, the current analysis attempts to answer three questions: first, has the transition to adulthood in China become more differentiated in the past three decades? Second, which demographic groups have experienced the greatest changes? Third, which life domains (family, education or work) contribute most to these changes?

Data and Method

The current analysis employs data from three consecutive censuses (1982, 1990 and 2000 censuses) and 2005 mini-census. Census data are by far the most representative sample of
Chinese population. All censuses have comparable measure of life domains (living arrangement, school enrollment, employment status, marital status and parenthood status). These measures are going to be used to construct the structure of transition to adulthood.

In order to obtain the structure of the transition to adulthood in China, the current analysis adopts the entropy index developed by Fussell (2005) to compare the level of heterogeneity across censuses. In this method, each census is treated as a synthetic cohort. It expands Rindfuss (1991) to measure the heterogeneity of role combination at the population level. It has been applied to map the transition to adulthood in Mexico, Africa and Latin America (Fussell 2005; Grant and Furstenberg 2007).

Analytical Steps

I will adopt three steps to map the structure of the transition to adulthood in China:

First, I will the population between ages 15 and 35 at each census into six subgroups by gender (male and female) and household registration status (urban residents, rural residents, and rural-urban migrants).

Second, I will calculate the entropy index for every subgroup in every census based on the procedure described in Fussell (2005) (See details in Appendix A). The comparison across censuses will allow me to see if the transition to adulthood is more differentiated over time (the first question). Comparing indexes between groups over time will allow me to see which subgroups experience the greatest changes (the second question).

Third, I will use the de-composition method to examine which life domains (living arrangement, education, work, marriage, and parenthood) contribute most to the change (the third question).

Appendix A: How to the entropy index (Fussell 2005)

First, each person receives a seven-digit code describing their status in five life domains (living arrangements, school enrollment, employment status, marital status and parenthood status).

Second, the distribution of status combination is calculated at each age in each of the six demographic subgroups.

Third, the distribution is then summarized into an entropy index (Theil index). It ranges from 0 (perfect homogeneity) to a maximum heterogeneity.

Fourth, the age-specific level of heterogeneity is then calculated as a percentage of maximum entropy that 0=perfect homogeneity and 1=perfect heterogeneity.
REFERENCE

